
KI2 Lab 2: Supervised learning
Y. S. Antille, M. E. Solèr, J. Wichser

{antilyas, solerma1, wichsjoe}@students.zhaw.ch

1 Introduction
This hand-in is organised as follows. First, we evaluate sev-
eral classification models and approaches and analyse their
performance, mainly with the F1-score. Then, we utilise the
most successful model in an online hatespeech-evaluator.

All of the models listed here use stemming and removal of
non-specific words (stopwords). The performance of the
models is summarised in Table 1.

2 TF-IDF-based methods
In the first model, TF-IDF for feature extraction in conjunction
with a linear support vector machine is used. Although its
overall performance is acceptable for many applications (the
F1-score is 89%) and it performs well with non-hate com-
ments, it misclassifies almost a third of hate-comments.

Our first attempt at providing a remedy to this problem is by
using AUTO-SKLEARN1 leading to our second approach. AUTO-
SKLEARN automatically selects the model that performs best
from a range of algorithms, preprocessors and parameters2.
The selected model also consists of a linear SVC, and can thus
be understood as improvement of the default approach. Its
F1-score is however significantly better (95%). In particular,
this model detects hate-speech more reliably, scoring 11 F1
points better than the default model.

Comparison of our methods
Method F1-Score F1-Neg. F1-Pos.
TF IDF with linear SVM 89% 94% 60%
auto-sklearn 95% 97% 71%
Word2Vec with ETC 89% 84% 4%
Word embeddings 96% 98% 77%

Table 1: The methods are shown with three scores: F1-Score
describes the overall score for correctly identified sentences,
F1-Neg. quantifies the score of non-hate-speech sentences and
F1-Pos. describes the score of hate-speech sentences.

3 Word-embedding methods
Due to the relative success of the WORD2VEC model in the
Lab 1, we evaluate a similar approach. Using a word-
embedding technique instead TF-IDF, semantical similarites
among words are represented.

In our third model, we use the well-known WORD2VEC

method for feature extraction and classify the words using
a ExtraTreesClassifier (ETC). The ETC belongs to the class of
Random Forests, but is less susceptible to overfitting because
the individual tree’s prediction is averaged instead of used as
one vote for a class. The results are however poor. Although
the overall F1-score is similar to the first model, it misclassi-
fies most hate-speech sentences. Due to the more promising
approaches, we do not pursue it further. We assume that
the poor performance stems from a false application of the
WORD2VEC method.

Finally, we introduce the fourth model. It consists
of a neural network, which is composed in TENSOR-
FLOW. In contrast to the prior models, the Neu-

ral Network takes care of all analysis steps: vectorisa-
tion, embedding and classification. The model’s flow of
data for a single sentence is is described in Figure 1.

Figure 1: The structure of word embedding model. First, the sen-
tence is vectorised using a bag-of-words model. Then, the vectors
are transformed into a larger matrix, where semantic similarity is
considered. Empty cells are padded with zeros. Over two pooling
layers, the embeddings are transformed into a binary output.

The neural network is trained over 15 epochs, with the learn-
ing curve rendered in Figure 2. As the learning rate of the
training data surpasses the one of training data, the model
suffers from overfitting with more epochs. This is however
not a great concern, because it still generalises well after few
epochs (and thus, before overfitting).

Figure 2: The accuracy of the model (y-axis) vs. epochs (x-axis).
With more epochs, the model appears to overfit, and generalise less.

4 Application
To make practical use of the model, we introduce DETOXER,
a web-based application that evaluates a sentence and de-
cides whether it is considered as hate speech or not. Fig-
ure 3 shows its main interface. DETOXER is available under
https://detoxer.herokuapp.com

Figure 3: The interface of DETOXER. In this case, hate speech was
detected.

1Efficient and Robust Automated Machine Learning (2015), Matthias Feurer et al.
2We evaluated 65 algorithms, with an ensemble size of 1


